欧美精品在线第一页,久久av影院,午夜视频在线播放一三,久久91精品久久久久久秒播,成人一区三区,久久综合狠狠综合久久狠狠色综合,成人av一区二区亚洲精,欧美a级在线观看

        Stanford researchers use machine learning to improve efficiency in environmental protection

        Source: Xinhua| 2019-04-09 14:45:06|Editor: mingmei
        Video PlayerClose

        SAN FRANCISCO, April 8 (Xinhua) -- Researchers with Stanford University are employing new artificial intelligence (AI) technology to improve the efficiency of environmental protection by accurately detecting and identifying sources of possible pollution from animal farms, a Stanford newsletter said Monday.

        Stanford law professor Daniel Ho and his PhD student Cassandra Handan-Nader have found a way for machine learning to efficiently locate industrial animal operations on farms in the United States and help regulators assess environmental risks on each facility, said the Stanford Report, a newsletter delivering news about the university community via email.

        The newsletter said the U.S. Environmental Protection Agency has regarded agriculture as the leading source of pollutants into the country's water supply system.

        A huge proportion of the pollution was believed to come from large-scale, concentrated animal feeding operations, known as CAFOs, said the Stanford Report.

        The scarcity of CAFOs information has in some cases made it virtually impossible for regulators to monitor potential facilities that discharge pollutants into U.S. waterways, according to the newsletter.

        "This information deficit stifles enforcement of the environmental laws of the United States," Ho said.

        In order to improve environmental protection, Ho and Handan-Nader, who were helped by a group of students in economics and computer science with data analysis, resorted to several open source tools to retrain an existing image-recognition model to look for large-scale animal facilities.

        The Stanford researchers used the data collected by two nonprofit groups and the enormous database of satellite images by the U.S. Department of Agriculture in an effort to detect poultry facilities in North Carolina.

        They found their algorithm could find 15 percent more poultry farms than through manual enumeration, said the newsletter.

        "The model detected 93 percent of all poultry CAFOs in the area and was 97 percent accurate in determining which ones appeared after the feed mill opened," the two Stanford researchers wrote in their paper published in the online journal Nature Sustainability on Monday.

        They believed their algorithm could map 95 percent of the existing large-scale animal farms with fewer than 10 percent of the resources spent on manual counting of those locations.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001379625001
        主站蜘蛛池模板: 国产在线欧美在线| 26uuu亚洲电影在线观看| 在线观看v国产乱人精品一区二区 国产日韩欧美精品一区二区 | 日韩精品久久一区二区三区| 欧美性受xxxx狂喷水| 国产精品久久亚洲7777| 国产白嫩美女在线观看| 狠狠色噜噜狠狠狠狠88| 亚洲影院久久| 日本xxxx护士高潮hd| 91精品高清| 久久久久亚洲| 久久精品国产一区二区三区不卡| 国产精品99一区二区三区| av午夜在线观看| 久久二区视频| 久久精品国产色蜜蜜麻豆| 日本道欧美一区二区aaaa| 欧美三级午夜理伦三级中视频| 国产视频在线一区二区| 午夜看片网| 欧美高清xxxxx| 91国内精品白嫩初高生| 精品a在线| 亚洲精品国产setv| 国产一卡在线| 国产一区精品在线观看| 亚洲二区在线播放视频| 中文字幕一区二区三区不卡| 欧美一区二区三区久久综合| 欧美亚洲精品suv一区| 狠狠色丁香久久综合频道日韩| 久久精品—区二区三区| 性生交片免费看片| 国产一区二区麻豆| 亚洲精品一区二区另类图片| 久久国产精品视频一区| 精品少妇一区二区三区 | 国产精品高潮呻吟久| 久久99精品国产麻豆婷婷洗澡| 99久久国产综合| 99精品国产一区二区三区麻豆| 久久影视一区二区| 亚洲乱强伦| 97精品国产97久久久久久免费| 国产日韩一区在线| 性精品18videosex欧美| 高清人人天天夜夜曰狠狠狠狠| 国产69精品久久99的直播节目| 精品亚洲午夜久久久久91| 国产一区网址| 久久精品亚洲精品| 日本一区二区三区免费在线| 日韩精品一区三区| 妖精视频一区二区三区| 午夜看片在线| 国产精品1区2区| 99国产伦精品一区二区三区| 欧美精品xxxxx| 国产精品日韩一区二区三区| 国产一级在线免费观看| 99久精品视频| 亚洲精品456| 国产人澡人澡澡澡人碰视| 好吊色欧美一区二区三区视频 | 国产欧美一区二区在线观看| 大bbw大bbw巨大bbb| 欧美一区二区三区久久| 日韩欧美精品一区二区| 午夜影院试看五分钟| 日本少妇一区二区三区| 亚洲乱强伦| 国产一区二区在线观| 性色av色香蕉一区二区| 黄色国产一区二区| 久久夜色精品国产亚洲| 欧美一区二区三区三州| 日韩精品中文字幕在线| 国产一区午夜| 亚洲精品久久久久久久久久久久久久| 午夜免费网址| 激情aⅴ欧美一区二区三区| 国产一区2| 亚洲天堂国产精品| 91精品福利在线| 999久久国精品免费观看网站| 国产伦理精品一区二区三区观看体验 | 性old老妇做受| 国产在线一卡| 99精品一区二区| 精品国产乱码久久久久久久久| 国产一区2区3区| 久久夜色精品久久噜噜亚| 91波多野结衣| 亚洲欧美中日精品高清一区二区| 国产精品一区二区在线观看免费| 99精品久久99久久久久| 国产乱码精品一区二区三区介绍| 四虎国产永久在线精品| 日韩精品1区2区3区| 亚洲精品久久久久玩吗| 日韩欧美一区精品| 97精品久久久午夜一区二区三区| 国产精品剧情一区二区三区| 国产午夜精品一区二区三区最新电影| 综合欧美一区二区三区| 日韩a一级欧美一级在线播放| 亚洲三区在线| 久99久视频| 国产精品亚州| 国产999精品视频| 扒丝袜pisiwa久久久久| 国产一区二区激情| 国产一区二区午夜| 国产精品视频1区2区3区| 中文字幕一区一区三区| 97人人澡人人爽91综合色| 亚洲精品老司机| 日韩av一区不卡| 国产精品9区| 午夜特片网| 欧美一区二区三区不卡视频| 91avpro| 国精产品一二四区在线看 | 一区二区三区四区视频在线| 精品国产一区二区三区四区vr| 国产91免费在线| 精品a在线| 国产一区亚洲一区| 欧美一区二区三区三州| 午夜影院毛片| 欧美一区二区三区四区在线观看| 中文在线一区二区三区| 69精品久久| 17c国产精品一区二区| 99久久精品免费看国产交换| 99国产精品99久久久久| 亚洲欧洲国产伦综合| 国产一区在线免费| 精品一区中文字幕| 99久久精品国产系列| 国产日韩欧美亚洲| 国产精品久久久久久久久久嫩草| 91精品久久久久久综合五月天 | 国产二区精品视频| 小萝莉av| 色乱码一区二区三在线看| 不卡在线一区二区| 国产的欧美一区二区三区| 久草精品一区| 国产一区二区在线观看免费| 欧美一区二区三区不卡视频| 99精品偷拍视频一区二区三区 | 亚洲欧美国产中文字幕| 91精品国产高清一区二区三区| 又黄又爽又刺激久久久久亚洲精品 | 精品国产区一区二| 国产综合久久精品| 日韩欧美中文字幕精品| 欧美在线视频一区二区三区| av素人在线| 日韩区欧美久久久无人区| 久久久久久亚洲精品中文字幕| 国产91久久久久久久免费| 国产精品乱码一区| 久久久精品观看| 免费看性生活片| 国产精品国产三级国产专区53| 国产午夜亚洲精品| 一区二区久久精品66国产精品| 国产日韩欧美另类| 久精品国产| 国产馆一区二区| **毛片免费| 亚洲1区在线观看| 99精品视频一区二区| 欧美精品一区二区久久久| 亚洲精品无吗| 93精品国产乱码久久久| 国产日韩欧美亚洲综合| 精品国产1区2区3区| 久久精品一二三四| 91麻豆精品国产91久久久无限制版| 欧美乱妇在线观看| 97人人澡人人添人人爽超碰| 国产午夜一区二区三区| 国产视频一区二区不卡| 国产午夜一级片| 国产在线一区观看| 国产精品欧美一区二区三区| 午夜叫声理论片人人影院| 男人的天堂一区二区| 国产精品高潮呻吟三区四区 | 久久97国产| 99国产精品欧美久久久久的广告| 93久久精品日日躁夜夜躁欧美| 69xx国产| 午夜a电影| 亚洲美女在线一区| 四虎国产精品久久| 少妇自拍一区| 久久国产免费视频| 国产v亚洲v日韩v欧美v片| 国产午夜一区二区三区| 国产呻吟久久久久久久92 | 国产69精品久久久| 国产乱xxxxx国语对白| 狠狠色噜噜狠狠狠狠色吗综合| 国产精品综合久久| 欧美一区二三区| 九色国产精品入口| 狠狠插狠狠插| 久久综合久久自在自线精品自| 国产午夜精品一区二区理论影院 | 欧美一区二区三区激情在线视频| 久久伊人色综合| 国产二区免费视频| 四虎影视亚洲精品国产原创优播| 三级视频一区| 国产一卡在线| 欧美精品久久一区| 国产一区二区中文字幕| 国产精品久久久久久久久久久不卡| 亚洲欧洲一区二区| 十八无遮挡| 国产视频在线一区二区| 一区二区在线不卡| 精品久久9999| 精品国产区一区二| 国产69精品久久| 国产免费区| 国产超碰人人模人人爽人人添| 色噜噜狠狠狠狠色综合久| 国产高清不卡一区| 国产香蕉97碰碰久久人人| 国产伦高清一区二区三区| 国产日韩一区二区在线| 国产精品视频1区| 色综合久久久久久久粉嫩| 日本三级韩国三级国产三级| 国产69精品久久久久777糖心| 亚洲精品久久久久一区二区 | 国产视频在线一区二区| 免费精品99久久国产综合精品应用| 狠狠色狠狠色合久久伊人| 亚洲精品456在线播放|